Response of microbial decomposition to spin - up explains CMIP 5 soil carbon range until 2100

نویسندگان

  • J.-F. Exbrayat
  • A. J. Pitman
  • G. Abramowitz
چکیده

Soil carbon storage simulated by the Coupled Model Intercomparison Project (CMIP5) models varies 6fold for the present day. Here, we confirm earlier work showing that this range already exists at the beginning of the CMIP5 historical simulations. We additionally show that this range is largely determined by the response of microbial decomposition during each model’s spin-up procedure from initialization to equilibration. The 6-fold range in soil carbon, once established prior to the beginning of the historical period (and prior to the beginning of a CMIP5 simulation), is then maintained through the present and to 2100 almost unchanged even under a strong business-as-usual emissions scenario. We therefore highlight that a commonly ignored part of CMIP5 analyses – the land surface state achieved through the spin-up procedure – can be important for determining future carbon storage and land surface fluxes. We identify the need to better constrain the outcome of the spinup procedure as an important step in reducing uncertainty in both projected soil carbon and land surface fluxes in CMIP5 transient simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disentangling residence time and temperature sensitivity 1 of microbial decomposition in a global soil carbon model

12 Recent studies have identified the first-order representation of microbial decomposition as a 13 major source of uncertainty in simulations and projections of the terrestrial carbon balance. 14 Here, we use a reduced complexity model representative of current state-of-the-art models of 15 soil organic carbon decomposition. We undertake a systematic sensitivity analysis to 16 disentangle the ...

متن کامل

The implications of microbial and substrate limitation for the fates of carbon in different organic soil horizon types of boreal forest ecosystems: a mechanistically based model analysis

The large amount of soil carbon in boreal forest ecosystems has the potential to influence the climate system if released in large quantities in response to warming. Thus, there is a need to better understand and represent the environmental sensitivity of soil carbon decomposition. Most soil carbon decomposition models rely on empirical relationships omitting key biogeochemical mechanisms and t...

متن کامل

Seasonality, Rather than Nutrient Addition or Vegetation Types, Influenced Short-Term Temperature Sensitivity of Soil Organic Carbon Decomposition

The response of microbial respiration from soil organic carbon (SOC) decomposition to environmental changes plays a key role in predicting future trends of atmospheric CO2 concentration. However, it remains uncertain whether there is a universal trend in the response of microbial respiration to increased temperature and nutrient addition among different vegetation types. In this study, soils we...

متن کامل

Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils

Empirical studies show that nitrogen (N) addition often reduces microbial decomposition of soil organic matter (SOM) and carbon dioxide (CO2) production via microbial respiration. Although predictions from theoretical models support these findings, the mechanisms that drive this response remain unclear. To address this uncertainty, we sampled soils of three grassland sites in the U.S. Central G...

متن کامل

Emulating Atlantic overturning strength for low emission scenarios: consequences for sea-level rise along the North American east coast

In order to provide probabilistic projections of the future evolution of the Atlantic Meridional Overturning Circulation (AMOC), we calibrated a simple Stommeltype box model to emulate the output of fully coupled threedimensional atmosphere-ocean general circulation models (AOGCMs) of the Coupled Model Intercomparison Project (CMIP). Based on this calibration to idealised global warming scenari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017